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INTRODUCTION 

This report considers the derivation and illustrates the use of a 

passive analog circuit to investigate dynamic properties of square 

plates. Two basic studies are conducted: 

1. Effect of boundary bending flexibility on the 
fundamental modal frequency for both uniform 
and tapered geometry. 

2. Effect of edge dampers and a uniformly distributed 
loading on the frequency response characteristics 
of a uniform square plate. 

The results of these two studies are displayed as plots and charts based 

upon data obtained from the passive analog computer. 

The analog circuit employs mobility concepts and is derived essen- 

tially by equating the strain energy and kinetic energy associated with the 

lateral vibration of an arbitrary rectangular plate to the energy of the 

analog circuit. The resultant analog circuit can be applied to any rectan- 

gular plates with nonuniform physical properties, with arbitrary boundary 

conditions, and with any arbitrary deterministic and/or random loading. 
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1. CIRCUIT DERIVATION FOR THE LATERAL VIBRATION 

OF RECTANGULAR PLATES 

1.1 GENERAL BACKGROUND 

The use of electrical analogies to solve physical problems is not a 

new concept. As early as 1845, Kirchhoff (Reference 7) used analog cir- 

cuits to study current flow characteristics through a circular disk. Two 

of the earlier works dealing with analysis of structures by electrical 

analogs date to Firestone (Reference 4) in 1933 and Bush (Reference 3) in 

1934. To gain a more complete historical perspective of electro-analogic 

methods, in general, the reader is directed to the work of Higgins (Ref- 

erence 6). 

Attention is focused in this discussion on the derivation and use of a 

passive electrical analog for the lateral vibration characteristics of a flat, 

rectangular plate. As contrasted with active electrical analogs consisting 

of operational amplifier circuits, a passive analog is a circuit consisting of 

some combination of passive circuit components, i. e., resistors, inductors, 

capacitors, and transformers. A direct or one-to-one correspondence ex- 

ists between components in the electrical network and the elements of the 

mechanical system. In many instances, a topological similarity also exists 

between the mechanical system and electrical circuit so that an intuitive 

understanding of the electrical model is promoted. 

Classically speaking, the passive circuit used here for dynamics anal- 

yses is a mobilit analo Cent, velocity-voltage electrical net- 

work. This circuit is the dual of the mechanical impedance analog which may 

be classically defined as a force-voltage, velocity-current electrical net- 

work. Consistent with the mobility definition, flexibility is proportional to 

inductance, mass to capacitance, and viscous damping to resistance. All 
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nodal voltages are equivalent to velocities at specific locations on the 

mechanical structure and all currents are equivalent to forces or moments. 

The electrical impedances in the passive network are equivalent to me- 

chanical mobilities and the electrical admittances are equivalent to me- 

chanical impedances. In Chapter 10 of Reference 5, Freberg provides 

an introduction to mobility concepts with application to linear mechanical 

oscillators. 

Although the derivation procedures discussed by MacNeal (Reference 8) 

and Barnoski (Reference 1) are applicable, a strain energy approach is used 

to derive a passive analog for the rectangular plate. Such an approach is 

consistent with the work of Ryder (Reference 9) and is shown schematically 

as Figure 1. This same strain-energy procedure is used by Barnoski and 

Freberg to develop analog circuits for the elasticity equations in three di- 

mensions (Reference 2). 

p Coordinate System 

Strain Energy 

v 

Equilibrium Equations 

Hooke’s Law 

Elemental Elasticity Circuits 
) with Strains and Strain Energy 4 

in Terms of Deflections 

Boundary Conditions Circuit Synthesis 

Figure 1. Strain Energy-Compatibility Approach for a Passive Electrical 
Analog of an Elastic Structural System 
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Elastic strain energy for a specific structure is first expressed in 

finite-difference form and then equated to twice the electrical power. 

Kirchhoff’s and Ohm’s laws are imposed to yield an analog circuit. This 

circuit is a force-current, displacement-voltage analog and, to retain 

the mobility orientation, is appropriately called a static-mobility analog. 

Such an analog describes the static behavior of a difference segment of 

structure and can be routinely converted to a dynamic analog by 

. defining all nodal voltages to be mechanically equivalent 
to velocities 

l changing all resistors to inductors 

b adding capacitors to ground at the deflection nodes 

. adding resistors if viscous damping is to be included. 

For use on a passive element computer, the circuit for a difference seg- 

ment of a rectangular plate is interconnected to form a complete elec- 

trical model for the lateral vibration of a rectangular plate. 

For mechanical systems described mathematically as second-order, 

ordinary differential equations in time, such as a system of interconnected 

mechanical oscillators, the mobility analog is a Resistor-Inductor-Capacitor 

(RLC) network. For undamped distributed mechanical systems described 

mathematically as higher-order, partial differential equations in space and 

time, the mobility analog is a LC-Transformer (LCT) network. This net- 

work approximates the original distributed system as a finite-difference 

mathematical model and is mechanically equivalent to a lumped-parameter 

model. The transformer interconnections account for the spatial geometry 

defined by the spatial derivatives in the original differential equation and 

represent one of the more difficult tasks in analog derivation. If viscous 

damping is included, resistors then appear in the LCT analog. The work of 

MacNeal (Reference 8) discusses in detail derivation concepts for simpler 

distributed elastic structures and is one of the more complete writings 

dealing with passive analogs and passive analog computers. 
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1.2 STRAIN ENERGY PROCEDURE 

The physical system is depicted in Figure 2 as a differential plate 

segment of dimensions dx, dy and of thickness h. The forces corre- 

spond to shear ‘a, and Q ) per unit length, bending moments per unit 
Y 

length (M and M ), 
xx YY 

and twisting moments (M 
XY 

and Myx) per unit 

length. Deflections are assumed to be small in comparison to the plate 

thickness and strain in the middle plane of the plate is assumed negligible. 

The strain energy per unit are8 of a rectangular, differential plate 

element in bending is given as Reference 10, page 46), 

2 

where the plate flexural rigidity is 

D= 
Eh3 

12(1 - V2) 

v) a2w c 3 2 

axay (1) 

(2) 

and E is Young’s modulus, w is the lateral deflection of the plate from 

static equilibrium, x and y are the spatial coordinates in the x and y 

directions, and v is Poisson’s ratio. In slightly different form the strain 

energy expression may be rewritten as 

(3) 
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Differential Plate Segment 

4- X 

y w 

dx 

Bending and Twisting Moments 

M 
YX 

A- 

T 
h 

Shear Forces 

Q tLdy 
Y ay 

+ 
aM 
xy 

ax 
dx 

Figure 2. Differential Segment of a Rectangular Plate in Bending 
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The first two terms denote the strain energy due to bending and the last 

term specifies the strain energy due to twisting. 

For a plate element of difference dimensions (Ax, Ay, ), the strain 

energy may be expressed in finite difference form 

2 v = D 2 Ax(ex) + v 2 c 2 
t D $ (1 - v2) 

2 

(4) 

2 
t 2D 

where the directional slopes in bending are defined as 

e =E 
X 

(5) 

Equating twice the strain energy with the power dissipation in a resistor 

yields 

2 
2v=p=k (6) 

where e is the positive voltage drop across the resistor R. Defining the 

bracketed terms of Eq. (4) as voltages, the strain energy expression re- 

duces in form to Eq. (6) and can be simulated electrically by the power 
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dissipation of three resistors. Using a 3 x 3 finite-difference grid, an ana- 

log circuit electrically equivalent to the strain energy expression of Eq. (4) 

is displayed as Figures 2-a, 2-b and 2-c with the circuit elements given by 

Figure 2-d. 

The finite difference grid shows nine rectangular plate segments 

where the x-difference positions are given by capital letters and the 

y-difference positions as numbers. Thus, the numerical difference be- 

tween two consecutive letters is the difference length Ax whereas the 

difference between two consecutive digits is the difference length Ay. The 

positive signs indicate the transformer polarity and define the manner in 

which the transformers must be interconnected to form the proper spatial 

geometry. 

Although sketched as three distinct circuits: (1) the lateral deflection 

circuit, (2) the fZIx slope circuit, and (3) the 8 circuit, these circuits are 
Y 

magnetically coupled by the transformers. Transformers 2 and 3 couple 

the lateral deflection with the Ox and 8 slope circuits, respectively. 
Y 

Transformer 1 accounts for the Poisson coupling in the first bracketed 

term of Eq. (4) by constraining the Bx and 8 circuits. Resistors Rl and 
Y 

R2 account for the bending strain energy while the R3 resistor accounts 

for the twisting strain energy. The resistor magnitudes are noted as re- 

ciprocals of the coefficients in Eq. (4). 

Since the magnitude and direction of forces and moments are required 

in stress analyses, it is necessary to calculate the mechanical equivalents 

of the currents flowing through the various resistors. The relationships be- 

tween the moments and curvature are defined by Timoshenko and Krieger 

(Section 21 of ‘Reference 10) as Eq. (7). 
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Figure 2-a. Deflection Circuit (w) for a Rectangular Plate in Bending 
Assuming Small Deflection Theory 
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Figure 2-b. (& C ircuit for a Rectangular Plate in Bending Assuming Small 
Deflection Theory 
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Figure 2-c. 8 
IT 

Circuit for a Rectangular Plate in Bending Assuming Small 
eflection Theory 
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Circuit Elements 
-- .__ .___ 

Resistors Transformers 
-~ -. 

R1 =i% b 
p1 AX -= v - 

AY s1 AY 

R2=z* 
1 

D(1 - v2) 
p2 
- = Ax 
s2 

R3=aX. 1 
AY 2D(l - v) P 

3 

s3= Ay 

J-j= Eh 
3 

12(1 - v2) 
= flexural rigidity of the plate 

E = Young’s modulus 

h = thickness of the plate 

v = Poisson’s ratio 

Ax = incremental x distance of the plate grid 

Ay = incremental y distance of the plate grid 

Figure 2-d. Element Values of the Circuits for a Rectangular Plate 
in Bending 
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(7) 

a(e) 
M = -M 

XY F 
= D(1 - v)+ 

where the term a 
2 

w/axay is arbitrarily expressed as a partial derivative 

of the slope 8 . 
Y 

Multiplying the M 
xx 

bending moment by Poisson’s ratio 

v and adding the resultant expression to M 
YY 

yields 

YY -1 2 
t VM =D(l-v2) % c I ay 

(8) 

Multiplying Eq. (8) by the difference length Ax and expressing the partial 

derivative in finite-difference form produces 

-Ax(M - vMxx) = 
YY 

$$D(l - v2)Ay(ey) (9) 

Noting A,ce,) corresponds to the voltage drop given by the second term of 

Eq. (4), i. e., the voltage drop across the R2 resistor, Ohm’s law states 

12 
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the positive current flow through the R2 resistor is 

I = - (MY y - v Mxx) Ax (10) 
R2 

In a similar manner, positive current flows through the Rl and R3 re- 

sistors are shown to be 

IR 
Z-M Ay 

1 
xx 

I 
R3 

= (Mxy - Myx) AY 

(11) 
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2. ANALOG COMPUTER STUDY 

2.1 SCOPE OF PROGRAM 

The intent is to examine the dynamic characteristics of a homo- 

geneous square plate with uniform and nonuniform physical properties, 

with edge boundaries of varying bending flexibility, and with a distributed 

deterministic loading. The dynamic characteristics refer to the modal 

frequencies, mode shapes and the magnitude of velocity to force fre- 

quency response functions. Two basic studies are conducted: 

1. Effect of Boundary Bending Flexibility on the Dynamic 
Characteristics for both Uniform and Tapered Geometry 

2. Effect of Edge Dampers and a Uniform Distributed 
Loading on the Frequency Response Characteristics 

The first study is designed to show the effect of a flexible boundary 

in bending on the fundamental mode shape, the associated modal frequency, 

and the maximum magnitude of velocity to force frequency response func- 

tions. The response function is measured near the geometric center of 

the plate. Two symmetric loading conditions are considered (1) partially 

distributed or limited area loading applied at the center of the plate, 

(2) a loading of constant magnitude uniformly distributed over the surface 

of the plate. All boundary conditions are varied uniformly from simply 

supported at all edges to fully clamped at all edges with intermediate 

values of bending flexibility. 

For the tapered or nonuniform plates, the effect of a flexible 

boundary in bending on the fundamental mode shape and associated modal 

frequency is studied. The plates are tapered only in one direction with 

14 



thickness ratios at the boundaries of 1. 33 and 2. 00. These thickness 

ratios are called taper ratios in this discussion. 

The second study is designed to show the effect of viscous dampers 

on the magnitude of the frequency response function for a square plate 

simply supported at all edges. The dampers are uniformly distributed 

around the edges of the plate and the dashpot settings are varied uni- 

formly from simply supported boundaries to an arbitrary plausible 

value of viscous damping. The external loadings and location of the 

response function are the same as those in the first study. 

2.2 PHYSICAL STRUCTURES 

The basic structure is a flat, square aluminum plate with physical 

properties listed in Figure 3. 

a=b=l =lZin. 

h = 0. 0625 in. 

E = 10. 5 x lo6 lb/in.2 

p = 0. 10 lb/in. 
3 

Y = 0.3 

Figure 3. Physical Properties of Square Plate 
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The positive directions are shown by the x, y and w coordinate system 

where w is the deflection from the static equilibrium position. Other 

notation shows a and b as the plate dimensions in the x and y directions 

(both equal to the length I ), h is the plate thickness, E is Young’s 

modulus, p is the density of the material, and v is Poisson’s ratio. 

The tapered plates vary in thickness with a constant slope in the x 

dimension as sketched in Figure 4. 

Taper Ratio 

2,oo 

Taper Ratio 

I. 33 

Figure 4. Cross-s ection of Tapered Plates 

The taper ratio is defined as the ratio of the thickness at x = 0 to the thick- 

ness at x = I. 
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Assuming small deflections and linearized elasticity theory, the equa- 

tion of motion for a uniform rectangular plate is 

v4w t l-Q2W -- 
D at2 

= 0 (12) 

where the spatial operator, the plate flexural rigidity, and the plate mass 

per unit area are 

DE Eh 
3 

12(1 - v2) 
= 235 lb-in. (13) 

-5 lb-set 
2 

s= 1.62 x 10 
in. 

3 

Expressed as a function of the deflection w, this equation is noted as a 

fourth order, partial differential equation with constant coefficients. The 

deflection is understood to be a function of the spatial coordinates x and y, 

and of time t . 
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The solution to Eq. (12) is of the form 

w (x2 Y9 t) = >: >: 4’- (x, y) q-(t) 
m n 

(14) 

where m and n denote the number of half sines in the x and y directions 

for the mn mode, + -(x3 Y) is the mn mode shape of the plate, and 

q-(t) is the generalized coordinate associated with the mn mode. This 

solution is consistent with the modal theory of distributed structures and 

corresponds classically to the separation-of-variables technique in solving 

partial differential equations. 

For simply-supported boundary conditions of all edges, the mode 

shapes are 

%TUl (x, y) = sin? sin? 

with the associated modal frequencies 

(15) 

(16) 

For a square plate, the modal frequencies reduce to 
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f = 5 (m2 t n2) 
- 21 Ii- 

g cps 

Substituting the plate numerical values from Figure 3 into Eq. (17) pro- 

duces 

fl3U = 41.5 (m2 + n2) cps 

(17) 

(18) 

2.3 SCALE FACTOR AND SETTING VALUES 

To electrically set up the physical problem on an analog computer, 

the physical and geometric properties of the structure must be compatible 

with the element setting values on the analog computer. This is achieved 

through the use of the scale factors shown in Figure 5. Such factors are 

constants which interrelate the physical quantities in the mechanical and 

electrical systems and are discussed in detail by MacNeal in Reference 8 

Compatible with mobility concepts, the strain energy of Eq. (4) is ex- 

pressed in terms of the velocity; and, upon substitution of appropriate scale 

factors, the inductor and transformer settings become 

pa 
2 

1 Ax 
L1=- -- 0 0 a D AY 

p1 Ax -= y- 
s1 AY 

p2 Ax -=- 
s2 pe 

(19) 
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Forces 

F= 
F = mechanical force 

MO = bending moment 

kPe I 
Me= 

a10 1 
TO = torque or twisting moment 

I I = current corresponding to F 

I 
T = kA 

+ a1Q 1 

IS= current corresponding to MO 

I 
9 

= current corresponding to T 
4’ 

Coordinate Motion 

. ka 
W=NeG 

t 
m 

= Nte 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
k a, Pet 

I 
I 

$ = lateral or linear velocity 

i = slope velocity 

i = angular (twisting) velocity 

t = real or mechanical time 

e l = voltage corresponding to G 
W 

ei = voltage corresponding to 5 

e* = voltage corresponding to i 
9 

P+,N = scaling constants 

te = electrical time J 
Figure 5. General Scale Factor Relationships for Mobility Analogs 
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Compared with the quantities shown in Figure 2-d, the inductor setting 

values differ from the resistor expressions by the square of P 
Ef 

a. The 

first transformer remains unchanged whereas the second and third trans- 

formers differ by the Pe scale factor. 

To account for the kinetic energy of the mass associated with the finite 

difference grid, capacitors are added to each of the nodes in the deflection 

circuit. The capacitor magnitude at any node is given by 

1 1 
2 

c= ; qpx AY (20) 

where Ax and Ay are the difference dimensions for the nodal element. 

The inductor and transformer settings of Eq. (19) plus the capacitor values 

given above are the electrical components required to simulate the lateral 

vibration of a difference segment of rectangular plate. 

As a computational aid in computing setting values (and is particularly 

useful for uniform structures), the LlC product is formed from terms in 

Eqs. (19) and (20) as 

L1c = r2(?r[fl, (ilec)j2 $ 

s 

(21) 

where the transformer ratio is 

P Ax -=- 
S 

pe 
(22) 
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and the fundamental electrical frequency is related to the fundamental modal 

frequency of a simply supported plate as 

fll (elec) = Nfll (mech) (23) 

Equation (21) is used to create families of curves in fll (elec) for the trans- 

former ratio P/S versus the LIC product. 

2.4 COMPUTER CIRCUITS 

Based upon the number of available transformers, inductors, and 

capacitors in the passive analog computer, a 5 x 5 finite difference grid 

was adopted for the simulation of a full plate. Cascading the circuits of 

Figure 2, the resultant network for a 5 x 5 grid simulation of the lateral 

vibration of a rectangular plate appears as Figures 6. The components 

values are provided by Eqs. (19) and (20). Compared to the basic static 

circuits of Figure 2, capacitors have been added to the deflection circuit 

and resistors have been converted to inductors in the slope circuits. 

Symbolically, the inductors in Figures 6 are shown as resistors to mini- 

mize confusion between inductor symbols and transformer windings. These 

circuits remain unchanged for the tapered plates although the component 

setting values will vary from the setting values for a uniform plate. 

The hexagonal figures .at the circuit boundaries denote spatial posi- 

tions along the edges of the plate. These are the circuit locations at which 

boundary conditions are simulated. For simply supported or fully clamped 

boundary conditions at all edges, the hexagons denote simple single-throw 

switches to ground which are either open or closed as shown in Figures ‘7 

and 8. For boundary conditions with bending flexibility, the hexagons in the 
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- x. 

I A B C D E F 

Y 
1 

2 

3 

4 

5 

6 

Figure 6-b. gx Slope Circuit for the Lateral Vibration of a Rectangular Plate 
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Figure 6-c. iy Slope Circuit for the Lateral Vibration of a Rectangular Plate 
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-__. I- * . . -.._. - -_._ -._---. 

Analytical 

w (x, 0) = 0 

w (x, 1) = 0 

w (0, Y) = 0 

w (1, Y) = 0 

M,, (x, 0) = 0 

Mxx(x, I) = 0 

MyyW Y) = 0 

MyyW Y) = 0 

Mxy(Os Y) = 0 

Mxy(L Y) = 0 

__-._ __,_ ..___ _-___ -..-.... - ..-. .-.--..-- 

Analog 

G Circuit 

Ex Circuit 

8-1 
. 

E: Circuit 

8-1 l--ll....l.l..ll. - . ..- I.-- .- 
0 
8 Circuit 
Y 

Electrical Simulation of Conventional Boundaries 

Figure 7. Plate Boundary Conditions - All Edges 
Simply-Supported 
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Analytical Analog 

G Circuit 

2 .d w (x, 0) = 0 
E 
Q) 

~-.... ::~-- m 

d 
w(x, 1) = 0 

t w(O, Y) = 0 8- ii 
wu, y) = 0 

tx Circuit 

ex (x, 0) = 0 

ex tx, m) = 0 
8-t- 

Gy Circuit 

8 
OPI 

ey (0, Y) = 0 

G 
eyu, Y) = 0 

8-l 
- ,. 

Ey Circuit 

exy (0, Y) = 0 

exy (1, Y) = 0 
8--i 

___-__, I_ -__- -.--- --I_ -- .I -.-. .I --.--.-. 

Electrical Simulation of Conventional Boundaries 

Figure 8. Plate Boundary Conditions - All Edges Clamped 
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slope circuits represent inductors to ground while the deflection circuit 

boundaries remain unchanged. The setting values of the boundary inductors 

in the slope circuits correspond to the magnitude of the bending flexibility 

of the elastic boundaries. For boundary conditions simulating a simply 

supported plate with viscous dampers distributed around the edges, the 

slope circuits appear as shown in Figure 7 while the deflection circuit 

boundaries are resistor-capacitor parallel combinations connected to 

ground. The setting values of the boundary resistors correspond to the 

reciprocal of the dashpot constants and the capacitors to the mass of the 

plate distributed along the edges. 

By making use of symmetry conditions of the plate structure and ex- 

ternal loading, the basic 5 x 5 grid circuit can be converted to simulate a 

quarter section of the plate. This procedure essentially increases the finite 

difference network from a 5 x 5 grid to a 9 x 9 grid. All computer data ex- 

cept that for the tapered plates are based on the 9 x 9 grid simulation. 

To illustrate the scaling procedure, consider the computation of the 

basic setting values based upon the simply supported, uniform, square 

plate. For the 9 x 9 grid, Eq. (21) reduces to 

P Tr 1 1 -=- 
S 81 fll (elec) 

(24) 

where I = 9Ax. For electrical frequencies in the first mode of 100 cps and 

150 cps, plots of the transformer ratio versus the LIC product are shown. 

as Figure 9. For a transformer ratio of unity and an electrical frequency 

of 100 cps, the LIC product is 
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The transformer ratio 5 
I 1 

.--- 

relates to both transformers ------ 
----- 

2 and 3 for a square plate ------ 

0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 

LIC x 10 
-6 

Figure 9. Transformer Ratio versus LIC Product for Electrical Frequencies 
of 100 cps and 150 cps 



LlC = 0.1510 x 10 -6 
(25) 

Selecting Ll = 0. 500 h, the remaining component setting values become 

C = 0. 302 pfd 

Ll 
L2=-= 

1 - Y2 
0. 549 h 

L3 = 2 (1 _ v) = 0. 355 h 

P p2 p3 -=-z-z 100 
S 

s2 s3 
. 

p1 P -= y 
s1 

- = 0.300 
S 

(26) 

These setting values with the circuits of Figures 6 should yield a funda- 

mental circuit resonance very close to 100 cps (electrical). This corre- 

sponds to a time scale factor of N u 1. 205. 
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3. COMPUTER RESULTS 

3.1 FLEXIBLE BOUNDARY STUDIES 

The effect of the flexible boundary on the fundamental modal frequency 

for the uniform and tapered plates is displayed by the curves of Figure 10. 

The ordinate is shown as a frequency ratio where the denominator fss de- 

notes the fundamental modal frequency fll of a simply supported, square, 

uniform plate. The abscissa represents a ratio of the plate flexural 

rigidity (D) to the stiffness of the flexible boundary (ko) and extends theo- 

retically from zero (fully clamped boundary conditions) to infinity (simply 

supported boundary conditions). The D/k0 ratio shown ranges from 0.1 

to slightly above 10 and is noted to represent the region of maximum change 

in the frequency ratio. The ratios for the fully clamped boundaries are 

specified by the numerical values above the arrows along the y-axis whereas 

the ratios for the simply supported boundaries are specified by the numeri- 

cal values for the vertically aligned arrows on the right-hand side of the 

curves. 

For example, consider the fundamental frequency of a uniform square 

plate clamped along all of the edges to a flexible boundary. Assume the 

boundary to have a bending flexibility equal to the flexural rigidity of the plate. 

From the curve for the uniform plate in Figure 10 at D/k0 = 1. 00, the de- 

sired frequency is found to be fil z 1. 39 f . The f 

be numerically evaluated according to Eq. ‘(!t’7) 

ss frequency must then 

where m = n = 1. In a 

similar manner, f’ 
11 

modal frequencies for other flexible boundaries can 

be determined for uniform square plates as well as square plates with taper 

ratios of 1. 33 and 2. 00. 

The fundamental mode shape of a uniform square plate for four values 

of boundary bending flexibilities is shown as Figure 11. Each of the four 

figures represents a quarter section of plate where 5 denotes the lines of 
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1.6 

1.2 

0. 8 

0. 6 

1 

Stiffness Ratio (D/ko) 

Figure 10. Effect of Boundary Stiffness on the Fundamental Modal Frequency 
bf a Square Plate 
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symmetry in the x and y dimensions. The mode shape values are located 

at 1/q spatial positions. The flexibility of the boundaries is changed uni- 

formly at all of the edges and mode shapes are shown only for simply 

supported conditions (D/k0 = oo), fully or rigidly clamped conditions 

(D/k0 = 0), and two intermediate boundary flexibilities of D/k = 0.10 and 
0 

D/k0 = 1.00. Consistent. with theory, the relative magnitudes at each 

spatial location become less as the boundary bending stiffness is increased 

and reache a minimum for the fully clamped conditions. 

Figure 12 displays the fundamental mode shape for two tapered, 

square plates with four values of boundary bending flexibilities. Each of 

the figures represents a half section of plate and the modal values are 

shown at the 1/5 spatial positions. The flexibilities are represented as 

D/k0 ratios and are noted as the same values which appear in Figure 11; 

D/k0 = co, 1.00, 0.10 and 0. The mode shape for the simply supported 

uniform plate is shown for reference. For each taper ratio, the relative 

magnitude of the mode shapes at each spatial location becomes less with 

increasing boundary restraint. Similar to the modal behavior for the uni- 

form plate, the lowest values are observed at the fully clamped restraint. 

While exploring for the fl 3 modal frequency using the quarter plate 
* 

simulation with fully clamped boundaries, two very closely spaced modal 

frequencies of 550 cps (electrical) and 542 cps (electrical) were observed. 

Similar behavior was noted for this mode with flexible bending restraints. 

For simply supported boundaries, however, this dual mode behavior dis- 

appeared and a single f13 modal frequency of 451 cps (electrical) was ob- 

tained. Such dual modal characteristics are consistent with theory (Ref- 

erence 11) and are to be expected for square plates with uniformly clamped 

boundaries at all edges when the modal numbers are unequal but both even 

or both odd. 
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3.2 DAMPER EFFECTS STUDY 

The dashpot effects are evaluated by considering the magnitude of the 

response at a point for both a limited area loading and a loading distributed 

over the entire surface of the plate. Depicted in terms of a full plate, the 

limited area loading and edge conditions are shown as Figure 13. 

4t 

t 
9 

1 
Viscous Damper 

Limited Area 
Loading 

Figure 13. Area Loading on a Square Uniform Plate for 
Damper Effect Studies 

All dashpots are varied uniformly and are set at different values for each 

test run. Since the applied loading and conditions of the plate structure 

are symmetric, only symmetric modes are excited. 

Figures 14 and 15 are frequency response plots for the limited area 

loading. These four plots show the effect of four distinct dashpot setting 

values expressed as c/m ratios of zero, 3.08 x 10 
4 

, 1. 54 x 10 
4 

, and 

0.461 x 104. The zero c/m ratio corresponds to conventional simply 

supported boundary conditions. The response plots are based on a quarter 
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Figure 14. Effect of Edge Dampers on the Response Characteristics of a 
Simply Supported Square Plate 
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Figure 15. Effect of Edge Dampers on the Response Characteristics of a 
Simply Supported Square Plate 
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plate simulation and display the magnitude of the velocity (volts) at location 

41/9, 4P/9 due to an applied loading of 0. 1 milliamps per quarter section. 

The response is shown as decibels (db) with 0 db corresponding to one volt 

while the frequency axis is the electrical frequency in cycles per second 

(cps). To convert the response values to the units of velocity (inches per 
l 

second) per unit total load (pounds) 
I I 
s the voltages must be multiplied 

by 125. To convert electrical frequency to mechanical frequency, the elec- 

trical values are to be divided by the scale factor N, which equals rr 1. 205 

for the 9 x 9 grid. 

Figures 16 and 17 are response plots with test conditions identical to 

those of Figures 14 and 15 except the loading is uniformly distributed over 

the entire surface of the plate. Based on the quarter plate simulation, the 

response has units of volts and the applied loading was 0. 02 milliamps per 

grid point (sixteen such points in the analog circuit). To convert the elec- 

trical response to units of velocity (inches per second) per unit total load 

(pounds), the voltages must be multiplied by 39. 1. 

With decreasing values of dashpot settings, the response in all modes 

decays in magnitude and the Q values for each of the modes tend to de- 

crease. As used here, Q is indicative of the sharpness of the modal peaks 

and is defined as 

f 
mn 

Q=Af-- (t3 db) (27) 

where f mn are the modal frequencies and Af (+3 db) is the half-power 
Inn- 

bandwidth of the mn mode. For small values of structural damping, this 

definition is consistent with the customary description of Q as the ratio of 

the center frequency to the half-power bandwidth. 
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Figure 16. Effect of Edge Dampers on the Response Characteristics of a 
Simply Supported Square Plate 
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Damping: 2 = 0.461 x 10-I 
m, 

Loading: Distributed 
Difference Grid: 9 x 9 
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Figure 17. Effect of Edge Dampers on the Response Characteristics of a 
Simply Supported Square Plate 
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In general, the response in the higher modes is less than the re- 

sponse in the lower modes. Compared with the response maximum in the 

fundamental mode for simply supported boundaries, other fll response 

maxima for various values of edge dampers are shown in Figure 18. Ex- 

pressed as a percentage reduction of the response for simply supported 

edges, the data of Figure 18 appears as Figure 19. In both plots, the 

abscissa theoretically extends from the simply supported conditions 

(c/m,= co) to a fully suspended condition (c/q= 0) where the total energy 

of the applied loading is dissipated. The range of the shown c/m,values 

includes the maximum effect of the dampers on the response to harmonic 

motion. 

3.3 ERRORS 

The most significant errors inherent in the passive circuits are 

associated with the finite-difference representation of the distributed struc- 

tur e. For a uniform square plate with simply supported boundary condi- 

tions at all edges, the ratio of modal frequencies for finite difference and 

distributed models is 

w ’ 4N; 
-= 
w 

mn rr2 (m2 t n2) 
kin2(T)+ sin’( 

nr 

2N0 ,3 

(28) 

In this equation, w’ 
ll-Xl 

is the mn modal frequency for a finite difference model, 

w 
mn 

is the mn modal frequency obtained by solving the partial differential 

equation for a plate and given as 
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Figure 18. Typical Effect of Edge Dampers on the Magnitude of the Maximum Response per Unit 
Total Load for a Uniform Square Plate 
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Figure 19. Percentage Reduction of the Maximum Response Due to Viscous Edge Dampers 



2 2 D 
w - 0 =2 (m 

I 
t n2) 

d- m, 
(29) 

where m and n are the number of half waves in the x and y directions,- and 

NO the number of finite difference grids. Plotted as a percentage of onnn, 

the modal frequency errors due to finite difference approximations for vari- 

ous grid sizes are shown as Figure 20. As the grid size is increased, the 

error in all modes is reduced with the least error associated with the 

fundamental mode. These curves strikingly depict the reason for maximiz- 

ing the difference grid per computer size for any problem. 

The modal frequency errors associated with the grids used in the plate 

simulation of this study are tabulated as Figure 21. The results for the 

passive analog simulation are the values obtained on the analog computer 

and the percentages denote the variations from the analytical solution. The 

differences between the finite difference and passive analog errors repre- 

sent errors due to computer parasitics. These parasitics errors are small 

compared to difference errors and are due to stray impedances resulting 

from imperfect circuit components and computer layouts. 

The finite difference error is dependent also on the boundary conditions 

as is reflected in the ratio of the fundamental modal frequencies for fully 

clamped and simply supported boundary conditions. From the data for a 

uniform plate shown in Figure 10, the frequency ratio obtained from analog 

computer data is 1. 70 as contrasted with 1. 83 obtained from theoretical 

expressions developed by Warburton in Reference 11. This represents a 

discrepancy of 7. 1% and represents an approximate upper bound for dif- 

ference error in the fundamental mode of a uniform plate simulated with a 

9 x 9 grid. 
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Figure 20. Finite Difference Error for a Square Plate Simply Supported 
at all Edges 
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Solution to 
Differential 
Equation 

5 x 5 Grid 

9 x 9 Grid 
(l/4 Plate) 
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9 x 9 Grid 
(l/4 Plate) 
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Figure 21. Modal Data Comparisons for a Square Plate Simply Supported 
at all Edges 
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